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Abstract
In this article, we develop a framework for analyzing the causal effects of interventions in the presence of latent factors that could
affect outcomes, even in the absence of interventions. This framework will be useful in situations in which genes are included
among the latent factors. We estimate the model and study the early origins of observed later-life disparities by education.
We determine the role played by cognitive, noncognitive, and early health endowments. We identify the causal effect of education
on health and health-related behaviors. We show that family background characteristics and cognitive, noncognitive, and health
endowments developed by age 10 are important determinants of health disparities at age 30. We also show that not properly
accounting for personality traits results in overestimation of the importance of cognitive ability in determining later health. Selec-
tion on preexisting traits explains more than half of the observed differences in poor health and obesity. Education has an impor-
tant causal effect in explaining differences in smoking rates. There are significant gender differences. We go beyond the current
literature, which typically estimates mean effects, to compute distributions of treatment effects. We show that the effect of
education on health varies among individuals who are similar in their observed characteristics, and how a mean effect can hide
gains and losses for different individuals. This analysis highlights the crucial role played by promotion of good health at an early
age and the importance of prevention in the reduction of health disparities. We speculate about how the model can be applied to
genetic studies.
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Background

Researchers are paying increasing attention to the social

determinants of health and placing growing emphasis on the

value of early childhood interventions (Commission on Social

Determinants of Health, 2008; Currie, 2009b; Marmot, 2010).

Recent studies suggest that early endowments, including genes,

play an important role in understanding the etiology and the

evolution of health disparities (Bamshad, 2005; Fine, Ibrahim,

& Thomas, 2005). Genes and other factors set early in life may

determine the choice of education, lifestyles, and environments

that are beneficial or detrimental to health. Observed health

differences in individuals living in different environments may

reflect, in part, heterogeneity in these early endowments. They

may also play a role in determining differential responses to

interventions and choices across individuals otherwise similar

in their observed characteristics.1

A growing literature establishes strong relationships between

early childhood conditions and adult outcomes (Knudsen,

Heckman, Cameron, & Shonkoff, 2006). Gaps in both cognitive

and noncognitive abilities across different families emerge at an

early age (Cunha, Heckman, Lochner, & Masterov, 2006), as

do gaps in health (Case, Lubotsky, & Paxson, 2002). Various

studies suggest it is possible to partially compensate children

damaged by adverse environments (Heckman, Moon, Pinto,

Savelyev, & Yavitz, 2010). Very little research has focused on

the role of these early factors on later health—there is still much

to know. Our research aims to start to fill this gap.
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We present a general framework that allows for both

cognitive, noncognitive, and health factors and the choices of

lifestyles, education, and environments to affect health

outcomes. The concept of developmental health, comprising

physical, genetic, cognitive, and psychosocial dimensions of

child development, has been influential in life-course

epidemiology (Davey Smith, 2003; Kuh & Ben-Shlomo,

1997), but it has not yet been fully accepted into the main-

stream economics or medical literatures (McCormick, 2008).

In previous work (Conti, Heckman, & Urzua, 2010a, 2010b),

we have studied the early origins of the education–health gradient.

Health gaps between education groups are rising (Meara, Richards,

& Cutler, 2008). Many authors have noted that better health early

in life is associated with higher educational attainment (Currie,

2009a; Grossman, 1975; Perri, 1984; Wolfe, 1985), and that more

educated individuals, in turn, have better health later in life and

better labor market prospects (Cutler & Lleras-Muney, 2010;

Grossman & Kaestner, 1997). A positive correlation between

health and schooling is one of the most well-established findings

in the social sciences (Kolata, 2007). However, whether and to

what extent this correlation reflects causality is still subject to

debate (see Grossman, 2000, 2006, for comprehensive reviews

of the literature). Three explanations are offered in the literature:

(a) causality runs from education to health (Grossman, 1972,

2008); (b) causality runs from health to education (Currie,

2009a); and (c) both health and education are determined by a

third factor, such as time or risk preferences (Fuchs, 1982).

Understanding the relative importance of each of these mechan-

isms in generating observed differences in Health � Education

interactions is relevant to designing policies to promote health.

Much of the literature in epidemiology and public health

decomposes health disparities by education without taking into

account the fact that people make different educational choices

on the basis of factors that are also determinants of health beha-

viors. The literature in economics addresses this problem

largely using instrumental variables (Currie & Moretti, 2003;

Lleras-Muney, 2005). This article examines the origins of

health disparities by education in the context of a general

framework of latent variables to analyze the effect of interven-

tions and to disentangle causality from selection effects.

The paper is organized as follows. We first present a model

of choice of schooling, lifestyles, and environments, which can,

in principle, incorporate the role of genetics. We then detail our

empirical analysis, which summarizes the research of Conti,

Heckman, and Urzua (2010a, 2010b). Data and empirical

results are then discussed. We next show how to estimate the

causal effects of education on health and report estimates.

Finally, we discuss the possible application to genetics.

A Causal Model With Latent Factors
Determining Outcomes and Choices of
Education, Lifestyles, and Environments

This section presents a framework for causal analysis,

developed in Carneiro, Hansen, and Heckman (2003); Aakvik,

Heckman, and Vytlacil (2005); and Abbring and Heckman

(2007). An agent at age t is characterized by a vector of

capabilities:

yt¼ ðyCt; yNt; yHt; yGÞ;

where yCt is a vector of cognitive capabilities, yNt is a vector of

noncognitive capabilities, yHt is a vector of health stocks, and

yG is a genetic determinant. The latent factors in yt can evolve

over time and may be governed by investment decisions

(see Cunha & Heckman, 2008, 2009; Cunha, Heckman, &

Schennach, 2010). We discuss how to introduce the genetic

factor into analyses later in this article. For now, yG is just

another latent factor.

A Latent Variable Model of Choice and
Outcomes

Let S�i denote the net utility an individual derives from select-

ing a certain environment and Di denote a binary variable indi-

cating his or her actual decision (so Di ¼ 1 if the individual

selects that environment and Di ¼ 0 otherwise). Thus, we

assume:

Di ¼ 1 if S�i � 0;Di ¼ 0 otherwise: ð1Þ

The net utility S�i is determined by an individual’s observed and

unobserved characteristics:

S�i ¼ mS Zið Þ þ Vi;

where Zi is a vector of observed characteristics determining an

individual’s net utility level and Vi is an unobserved random

variable that also affects utility. Zi and Vi are assumed to be

statistically independent conditional on X.

Once the individual has selected her environment, all future

outcomes are potentially causally related to this decision. Our

model allows individuals to choose their environments, taking

into account the potential outcomes in the two possible states

(exposed and unexposed).2 This feature of our model is

extremely important. To the extent that individuals select their

environments anticipating future outcomes, we need to control

for the potential consequences of selection when comparing

outcomes across levels of exposures (i.e., comparisons of the

outcomes of individuals exposed and unexposed are not infor-

mative on causal questions because the two samples are not

random samples of the potential outcomes in the population for

each state). We deal with the selection problem by using a

model of potential outcomes due to Neyman (1923) as

extended in economics to model the choices of the environ-

ments made by the agents (e.g., Heckman & Sedlacek, 1985;

Roy, 1951). In this model, observed and unobserved variables

(unobserved from the point of view of the researcher but pos-

sibly known to the agent) are correlated across exposure levels

and outcomes. We link the unobserved variables in our choice

and outcome models to individual’s cognitive, noncognitive,

health, and genetic endowments through measurement equa-

tions. This feature of our approach represents an important
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contribution because it not only allows for a simultaneous role

for endowments as determinants of choices and outcomes, but

it also recognizes that some of these endowments are

unobserved by the researcher but are known to the agents (for

example, we allow for the possibility that individuals with a

certain genetic endowment are more likely to select a certain

environment and also more likely to adopt certain behaviors).

See Heckman (2008, 2010) for a discussion of the importance

of joint modeling of choice and outcome equations in causal

inference. Conventional causal models in statistics do not

model the selection process. Our model includes both continu-

ous and discrete outcomes. We now turn to the discussion of

how we model each type of outcome.

Continuous Outcomes

Let (Yi1, Yi0) denote the potential outcomes for an individual (i),

corresponding to the event of selecting or not selecting a certain

environment (respectively). The model assumes that each of

the potential outcomes is determined by an individual’s

observed and unobserved characteristics. Specifically, we write

the potential outcome associated with environmental exposure

as follows:

Yi1¼ m1ðXi;Ui1Þ ð2Þ

and the potential outcome obtained if a person is unexposed as

follows:

Yi0¼ m0ðXi;Ui0Þ ð3Þ

where Xi is a vector of observed characteristics and (Ui1, Ui0)

denote the unobserved components. It is not strictly required

that Xi be statistically independent of Ui1, Ui0, and Vi (for

purposes of estimation, it is convenient to assume that Xi is

independent of Ui1, Ui0, and Vi, but this is not strictly required).

An additively separable structure for m0 (Xi, Ui0) and m1 (Xi,

Ui1) is not required. However, in our empirical implementation

of the model, we assume additive separability:

m0 Xi;Ui0ð Þ ¼ b0Xi þ Ui0 and m1 Xi;Ui1ð Þ ¼ b1Xi þ Ui1. We

do not impose any assumptions on the correlations among

Ui1, Ui0, and Vi. We allow the unobserved components from

outcomes and environmental choice to be correlated, and as

previously explained, any comparison of outcomes across

levels of exposures should take into account the potential

selection problem. Notice that in this setup, the observed

outcome (Yi) is produced by potential outcomes (Y1i and Y0i)

and the selection of the environment (Di):
3

Yi ¼ DiY1i þ 1� Dið ÞY0i: ð4Þ

Discrete Outcomes

Our general approach allows for dichotomous outcomes. In

such cases, we use a model of potential outcomes with an

underlying latent index structure. Let B�i0 and B�i1 denote the net

utilities for individual (i) associated with the outcome in each

of the two regimes. These utilities are assumed to be a function

of observed (Qi) (Qi might include the same variables as Xi) and

unobserved (ei1; ei0) characteristics. Specifically, we assume

the following:

B�i1 ¼ k1 Qi; ei1ð Þ
B�i0 ¼ k0 Qi; ei0ð Þ

where Qi � ei0; ei1ð Þ and ‘‘ � ’’ denotes statistical independence.

Associated with each B�is s ¼ 0; 1f gð Þ, we define the binary

variable Bis as follows:

Bis ¼ 1 ifB�is � 0; Bis ¼ 0 otherwise:

As in the case of continuous outcomes, we assume linear-in-

parameters and additive specifications for the functions

k0 Qi; ei0ð Þ and k1 Qi; ei1ð Þ in our empirical implementation

of the model—k0 Qi; ei0ð Þ ¼ l0Qi þ ei0 and k1 Qi; ei1ð Þ
¼ l1Qi þ ei1—but, as in the continuous case, this is a matter

of computational convenience and is not strictly required. We

also allow for correlations among ei1, ei0, Ui1, Ui0, and Vi. The

observed outcome Bi is as follows:

Bi ¼ Bi1Di þ Bio 1� Dið Þ: ð5Þ

Unobserved Endowments

Our model allows for general statistical dependence among the

unobserved components Vi, Ui1, Ui0, ei0, and ei1. We model the

dependence by assuming that the error terms are characterized

by a factor structure that we interpret as cognitive and noncog-

nitive abilities, health, and genetic endowments. Specifically,

and suppressing the subindex (i) to simplify the exposition, if

we let y denote a vector of unobserved factors, with

y ¼ yC; yN ; yH ; yGð Þ, where yC , yN , yH and yG can be vectors

and represent the cognitive and noncognitive abilities, health, and

genetic endowments, respectively, we assume the following:

V ¼ aVyþ uV

U1 ¼ aU 1
yþ uU1

U0 ¼ aU0
yþ uU0

:

e1 ¼ ae1
yþ ue1

e0 ¼ ae0
yþ ue0

where, for simplicity of exposition, we assume that

uV ; uU1
; uU0

; ue1
; ue0

ð Þ are mutually independent (this assump-

tion can be relaxed in a number of ways—see Cunha et al.,

2010, and Hu & Schennach, 2008). Using this structure, we can

analyze the effect of each of the components of y (cognitive,

noncognitive, health, and genetic factors) on each of the

outcomes controlling for the endogeneity of the choice of

the environment. To show this in greater detail, we rewrite the

choice equation as follows:

S� ¼ gZ þ aVyþ uV : ð6Þ
We rewrite the potential outcome associated with exposure as

follows:

Y1 ¼ m1 Xð Þ þ aU
1
yþ uU1

; ð7Þ
and we rewrite the potential outcome obtained if a person does

not select a certain environment as follows:
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Y0 ¼ m0ðX Þ þ aU0
yþ uU0

: ð8Þ

By decomposing the differences in outcomes observed in peo-

ple in different treatment conditions, we can parse out the com-

ponents that determine the selection into these conditions and

separate out causal effects from effects that would be present

even without the treatment.

Without further structure, the model is not identified. Up to

this point, there is nothing in our model that allows us to iden-

tify the levels (and distributions) of the components of y. We

must supplement our model with additional information to

identify it. We assume that the new source of information is not

affected by decisions about the choice of the environment, oth-

erwise it would also be contaminated by selection and a more

involved procedure would be required to obtain valid causal

inference. More general examples can be found in Carneiro

et al. (2003), Hansen, Heckman, and Mullen (2004), and

Heckman, Stixrud, and Urzua (2006).

The Measurement System

Following Carneiro et al. (2003) and Abbring and Heckman

(2007), we posit a linear measurement system to identify the

joint distribution of the unobserved endowments (y). Specifi-

cally, we supplement the model introduced above with a set

of equations linking early cognitive (MC), noncognitive (MN),

health (MH), and genetic measures (MG) with the unobserved

cognitive (yC), noncognitive (yN ), health (yH ), and genetic

(yG) factors so that we can give them a meaningful interpreta-

tion. Specifically, let MClf gNC

l¼1, MNj

� �NN

j¼1
, MHkf gNH

k¼1, and

MGmf gNG

m¼1 denote the set of early cognitive, noncognitive,

health, and genetic variables with NC , NN , NH , and NG denoting

the number of cognitive, noncognitive, health, and genetic

measurements available, respectively (assume that they are

‘‘dedicated’’; i.e., that they only measure one factor).4 For the

case of scalar factors yC , yN , yH , yG:

MC1 ¼ dC1X þ aC1yC þ uC1

..

.

MCNC
¼ dCNC

X þ aCNC
yC þ uCNC

MN1 ¼ dN1X þ aN1yN þ uN1

..

.

MNNC
¼ dNNN

X þ aNNN
yN þ uNNN

MH1 ¼ dH1X þ aH1yH þ uH1

..

.

MHNH
¼ dHNH

X þ aHNH
yH þ uHNH

MG1 ¼ dG1X þ aG1yG þ uG1

..

.

MGNG
¼ dGNG

X þ aGNG
yG þ uGNG

;

where X denotes the set of observed variables determining the

measures, and we assume that uC1; . . . ; uCNC
; uN1;

. . . ; uNNN
; uH1; . . . uHNH

; uG1; . . . uGNG
are mutually independent.

Our assumption of dedicated measurements implies, for exam-

ple, that intelligence tests are solely a measure of cognitive

ability (see Carneiro et al., 2003, and Cunha et al., 2010, for

an examination of more general cases). However, the factors

can be correlated among each other. Under the conditions in

Carneiro et al. (2003) and Abbring and Heckman (2007), the

model is identified. We now turn to an empirical illustration

of this model, summarizing some of the results from Conti,

Heckman, and Urzua (2010a, 2010b).

Empirical Application: The Early Origins of
the Education–Health Gradient

As an illustration of this approach, we develop a model of

schooling choice (the ‘‘environment’’ Di, in Equation 1) in

which individuals sort across schooling levels on the basis of

their gains in terms of health and labor market outcomes.

Clearly, other interventions and choices of environments can

be modeled. We summarize some of the analysis of Conti,

Heckman, and Urzua (2010a, 2010b; henceforth CHU). We

lack genetic data, so the example illustrates the application of

the general framework previously discussed but does not esti-

mate genetic relationships. We study the decision of whether

or not to stay on in schooling beyond the compulsory age and

its causal effects on adult outcomes.5 Specifically, in our

model, different schooling levels have associated different

adult outcomes: in our notation, Yi0; Yi1ð Þ are the potential

outcomes for individual (i) corresponding, respectively, to the

event of dropping out once one has reached the compulsory

schooling level and continuing education beyond it. These

differences arise not only because of the effects of observed

variables on adult outcomes, but also because of unobserved

factors, which we model and interpret as cognitive ability,

personality traits, and health stocks.

With this empirical application, we join together different

strands of the literature in economics, epidemiology, and psy-

chology. The first strand refers to the relationship between

health and cognitive ability. Although the importance of ability

bias has long been recognized in labor economics, the effect of

cognitive ability on health has received relatively less attention

(the only exceptions are Auld & Sidhu, 2005; Cutler &

Lleras-Muney, 2010; Elias, 2005; Grossman, 1975; Hartog &

Oosterbeek, 1998; Kaestner, 2009; and Shakotko, Edwards,

& Grossman, 1982). However, this topic has recently received

considerable attention in the field of cognitive epidemiology:

large epidemiological studies have found that intelligence in

childhood predicts substantial differences in adult morbidity

and mortality (e.g., Batty, Deary, Schoon, & Gale, 2007;

Gottfredson & Deary, 2004; Whalley & Deary, 2001).

The second strand refers to the relationship between person-

ality traits and health. Although there is already an established

literature in psychology on their importance (see Hampson &

Friedman, 2008; Roberts, Harms, Smith, Wood, & Webb,
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2006; and Roberts, Kuncel, Shiner, Caspi, & Goldberg, 2007),

economists have just started to explore the effects of personality

traits on health (Kaestner, 2009) and health-related behaviors

(Cutler & Lleras-Muney, 2010; Heckman et al., 2006).

Our work also relates to the literature on biological

programming (Gluckman & Hanson, 2006) and on the role of

early-life conditions on adult outcomes (Case, Fertig, &

Paxson, 2005), and to life-course epidemiology (Kuh &

Ben-Shlomo, 1997). We go beyond the current literature that

looks at the effect of a single health indicator (e.g. height in

adolescence) on later outcomes. We model health as a latent

factor to fully capture its multiple indicators and the possibility

that each indicator is measured with error (for a recent example

of this approach, see Dahly, Adair, & Bollen, 2008).

The final strand of the literature we refer to is the

research on the effect of education on nonmarket outcomes

(e.g., health, fertility, marriage). The positive correlation

between education and health has long been recognized in

the economic, epidemiologic, and medical literatures, and

several attempts at disentangling correlation from causality

have been made—in an extensive review of the literature,

Grossman (2006) concluded that there seems to be evidence

of a causal effect of education on health. Our methodology

allows us to disentangle differences in health between high-

and low-educated individuals into the components that can

be attributed to education and the part that is determined

by early-life factors correlated both with education and

late-life outcomes.

Data and Empirical Implementation

CHU uses data from the British Cohort Study (BCS70): a

survey of all babies born (alive or dead) after the 24th week

of gestation from 12:01 AM on Sunday, April 5, 1970, to

11:59 PM on Saturday, April 11, 1970, in England, Scotland,

Wales, and Northern Ireland.6 Thus far, there have been seven

follow-ups (1975, 1980, 1986, 1996, 2000, 2004, and 2008) to

track all members of the birth cohort. We have drawn informa-

tion from the birth survey, the second sweep (1980, age 10),

and the fifth sweep (2000, age 30). We have selected the fifth

sweep to secure the comparability of our results to those in the

literature (Heckman et al., 2006). After removing children born

with congenital abnormalities and non-Whites (or those with

missing information on ethnicity), and deleting responses with

missing information on the covariates, the sample size amounts

to 3,777 men and 3,620 women.

Schooling and Postschooling Outcomes

The following outcomes are considered in the analysis of CHU:

� Schooling. The schooling measure is a dummy variable

indicating whether or not the individual stayed in school

after reaching the minimum school-leaving age. For the

individuals in the BCS70 data, the minimum school-

leaving age was 16 years.

� Labor market outcomes. We have analyzed two labor

market outcomes: (log) hourly wages and full-time employ-

ment status. Both are measured at age 30.

� Healthy behaviors. We have considered three healthy

behaviors, all measured at age 30: use of cannabis over the

lifetime (this is scored as ‘‘1’’ if the individual has used

cannabis by the age of 30), daily smoking (scored as ‘‘1’’

if the individual smokes cigarettes every day), and regular

exercise (scored as ‘‘1’’ if the individual exercises

regularly).

� Health. We have analyzed three variables characterizing an

individual’s health status by age 30. These are self-reported

poor health (scored as ‘‘1’’ if the individual reports his or

her health to be ‘‘fair’’ or ‘‘poor’’), obesity, and depression.

Obesity is scored based on a body mass index (BMI) of

more than 25 (for females) or 30 (for males). (Note that

we use different thresholds for males and females because

the difference between high- and low-educated females is

barely statistically significant if we used a threshold of

30.) Depression is measured using the Malaise Inventory

(Rutter, Tizard, & Whitmore, 1970). The inventory

includes 24 ‘‘yes/no’’ items that cover emotional distur-

bances and associated physical symptoms. Individuals

responding ‘‘yes’’ to seven or more items are categorized

as depressed.

In this article, we discuss only daily smoking, self-reported

health and obesity in detail, as these are the three outcomes

studied in the health disparities literature more often (see

Conti, Heckman, & Urzua, 2010a, 2010b, for a discussion).

Summary statistics for our outcome measures are displayed

in Table A1 at our Web appendix (see http://jenni.uchicago

.edu/EdHealth/). Figure 1 displays the full range of educa-

tional differentials in our outcome measures. It is interesting

to notice that the magnitude of the differential varies depend-

ing on the outcome, but a sizeable educational disparity is

already present by age 30.

Measurement System

As indicators of cognitive ability, CHU use the following

seven test scores administered to the children at age 10:

the Picture Language Comprehension Test, the Friendly

Math Test, the Shortened Edinburgh Reading Test, and the

four British Ability Scales. CHU use six scales as mea-

surements of noncognitive ability: one administered to the

child (the locus of control scale), and five administered to

the teacher (perseverance, cooperativeness, completeness,

attentiveness, and persistence). As measures of the health

endowment, CHU use the height and the head circumfer-

ence of the child at age 10, and the height of the mother

and of the father (also measured when the child was aged

10). Further details are given in the Web appendix, where

summary statistics for the measurements are also presented

(see Table A2).
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Observed Characteristics

CHU include the following set of covariates in both the

measurement system and in the outcome equations:

mother’s age at birth, mother’s education at birth (whether

or not the mother continued education beyond the minimum

school-leaving age), father’s social class at birth, total gross

family income at age 10, whether the child lived with both

parents since birth until age 10, parity, and the number of

children in the family at age 10 (CHU also include child’s

weight in the measurement equation for child’s height

and head circumference, and mother/father weight in

the measurement equations for maternal/paternal height).

The schooling choice model also includes as a covariate the

gender-specific seasonally adjusted rate of unemployment-

related benefit claims (the claimant count) as observed in

January 1986. Summary statistics for the covariates are

presented in Table A3 in our Web appendix.

Distributional Assumption and Estimation
Strategy

CHU use mixture of normal approximations to the underlying

factors’ distribution. Normal mixtures can flexibly approxi-

mate a variety of distributions (see Ferguson, 1983):

yC

yN

yH

2
4

3
5 � p1F m1;S1

� �
þ 1� p1ð ÞF m2;S2

� �

where m1 and m2 are vectors of dimension 3 � 1 and S1 and S2

are matrices of dimension 3 � 3. The variance–covariance

matrices are not restricted to be diagonal matrices, so the

underlying factors are allowed to be correlated.

For the idiosyncratic components associated with the binary

choice models uV ; ue0
; ue1

ð Þ, CHU assume independent normal

distributions with a mean of 0 and a variance of 1. For the idio-

syncratic components associated with the continuous outcomes

uU0
; uU1

ð Þ, CHU assume independent normal distributions with

means equal to zero and unknown variances.

The joint density of the outcomes conditional on observables

is as follows:

f Y ;B;D;MC;MN ;MH jX ; Z;Qð Þ

where f 	ð Þ is the joint density of continuous (Y) and discrete

outcomes (B), schooling choices (D), cognitive measures

(MC), noncognitive scales (MN), and early health variables

(MH). Written in terms of unobservables, the density is as

Fig. 1. Disparities by education. The figure displays the differences in obesity, poor health and daily
smoking by education, between individuals with educational level equal to compulsory education
and individuals with some postcompulsory education. The differences are also presented by
gender. Adapted from Conti, Heckman, and Urzua (2010a, 2010b).
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follows:ZZZ
yC ;yN ;yHð Þ2y

f Y ;B;D;MC;MN ;MH jX ; Z;Q; tC; tN ; tHð Þ

dFy tC; tN ; tHð Þ

where f 	ð Þ is defined as above and Fy 	ð Þ denotes the joint

cumulative density associated with unobserved cognitive

yCð Þ, noncognitive yNð Þ, and health yHð Þ endowments. Notice

that, conditional on unobserved factors (and observed charac-

teristics), the components of D;MC;MN ; and MH are indepen-

dent, and the sample likelihood simplifies accordingly. (Y and

B are not independent of D given X (see Equations 4 and 5). How-

ever, conditional on y, any effect of D on Y and B is causal). Using

latent factors to account for the correlation across outcomes,

schooling decisions, and measurements simplifies the computa-

tion. CHU use Bayesian Markov Chain Monte Carlo methods

to compute the sample likelihood. See CHU for further details.

Defining the Causal Effects of Interventions

Di ¼ Yi1 � Yi0 denotes the person-specific treatment effect for

a given individual i and outcome Y. As before, Yi1 and Yi0

denote the outcomes associated with postcompulsory education

(Di¼1) and compulsory education (Di¼0), respectively. We

illustrate how to use our framework to compute treatment para-

meters in the context of a single outcome. However, our discus-

sion directly extends to the more general case of vectors of

continuous and discrete outcomes.

Di involves factual and counterfactual outcomes. The coun-

terfactual outcome refers to the same individual—what would

the outcome have been had he or she made a different choice?

For a given person we seek to determine what would be his or

her outcome if he or she continued education after compulsory

schooling compared to the case where they do not. As our

model deals with the estimation of counterfactual outcomes,

we can use it to estimate the distribution of person-specific

treatment effects. With this distribution in hand, we can com-

pute different average treatment parameters. We focus on the

average treatment effect in this paper7 (i.e., on the average

effect of the treatment on a person drawn randomly from the

population of individuals):

DATE 

ZZ

EðY1 � Y0jX ¼ x; y ¼ tÞdFX ;yðx; tÞ;

where we integrate E Y1 � Y0jX ¼ x; y ¼ tð Þ (the average

treatment effect given X¼x and y ¼ t) with respect to the

distributions of X and y, where FX ;y x; tð Þ is the joint distribution

of X and y evaluated at x, t. (We have omitted the subindex i for

simplicity—Y and X denote any outcome variable and associ-

ated covariates.)

For the question addressed in this paper, knowledge of the

distributional parameters is fundamental. Does anybody benefit

from post-compulsory education? Among those who stay on in

school after 16, what fraction benefits? The factor structure

setup allows us to estimate these distributional parameters,

following Aakvik et al. (2005) and Carneiro et al. (2003). We

now discuss the empirical results of CHU.

Empirical Results

Figure 2 presents the estimated distributions of cognitive,

noncognitive, and health endowments for males and females,

respectively. Panels A and C in both figures demonstrate the

importance of not imposing normal distributions for y. Further-

more, the comparison between males and females suggest

robust patterns, with the cognitive component highly correlated

with the noncognitive component for both genders.

The Role of Early Endowments as Determinants
of Adult Outcomes

Figure 3 presents the sorting of individuals across schooling

levels in terms of the distributions of cognitive, noncognitive,

and health endowments. There is a clear sorting of high cogni-

tive and noncognitive individuals into the postcompulsory

level of schooling. The patten is observed for both males and

females. The sorting on the health endowment is not as strong

as the sorting observed in Panels A1–A2 (cognitive) and B1–

B2 (noncognitive), but it is statistically significant for females.8

Table 1 reports the marginal effects of y on daily smoking,

obesity, and self-reported health by level of education.9 Notice

that cognitive ability is a significant determinant of the educa-

tional choice, but it basically plays no role on health outcomes

(the only exception is the case of poor health for females in the

low-education group). On the contrary, noncognitive ability,

which is also a significant determinant of the educational

choice, exerts a powerful role in reducing the probability of

engaging in unhealthy behaviors such as smoking and poor

health at age 30 (notice that, in the latter case, the effect of non-

cognitive ability only achieves statistical significance for the

low-education group). We have also uncovered the role played

by early health conditions. For males, early health conditions

have no significant effect on the probability of staying on

beyond the minimum compulsory level of education, but they

have a direct effect on all the health outcomes at age 30. For

females, the effect of health conditions at age 10 seems to work

mainly through the educational channel. Notice that, for both

males and females, children with a better health endowment

at 10 are less likely to be obese by age 30, which is consistent

with our modeling of the health factor as a physical health

endowment. To gain a better understanding of the overall

impact of early life factors, including their effect through edu-

cation, we have computed the predicted unconditional outcome

(i.e., the outcome not dependent on education; results by level

of education are qualitatively similar; see CHU) and we have

plotted it by percentile of the respective factors in Figures 4–6.

In each case, for a given outcome Y, endowment yj, and percen-

tile Pyj
, we have computed E Y jyj 2 Pyj

� �
by integrating out the

observable characteristics and fixing the remaining two

unobserved endowments at their overall mean, and we have

normalized the predicted outcome to zero at the first percentile
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of the distribution of each factor, so that we can compare the

relative magnitude of their effects for both genders.

Our first striking result points to a much lesser role for

cognitive ability than has been emphasized in the cognitive

epidemiology literature. The result is especially strong for males:

A shift from the bottom to the top of the cognitive ability

distribution brings about no significant change in the probability

of daily smoking (Fig. 4, Panel A), of having poor health (Fig. 5,

Panel A), or of being obese (Fig. 6, Panel A) at age 30. The picture

is only slightly different for females: cognitive ability also plays

no role on the probability of being a daily smoker (Fig. 4, Panel B)

or of being obese (Fig. 6, Panel B), but it is an important
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Fig. 2. Joint distributions of the endowments. A: Cognitive and noncognitive endowments in males and females. B: Cognitive and health
endowments in males and females. C: Noncognitive and health endowments in males and females. The figures show the joint
distributions of cognitive, noncognitive, and health endowments and are generated using simulated data from our model. The simulated
data contains the same number of observations as the actual data. The estimated correlations are as follows: cognitive and noncognitive
endowments ¼ .544 for males and .541 for females, cognitive and health endowments ¼ .176 for males and .153 for females, and
noncognitive and health ¼ .093 for males and .040 for females. Finally, for each endowment, the mean is standardized to be zero.
Adapted from Conti, Heckman, and Urzua (2010a, 2010b).
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determinant of the probability of having poor health (Fig. 5, Panel

B). The second result that we emphasize is that both noncognitive

ability and early health have effects of comparable magnitude.

For example, a successful noncognitive/health intervention that

would move a child from the bottom to the top percentile of their

respective distributions would bring about a reduction in the prob-

ability of having poor health at age 30 by more than 10% for males

(Fig. 5, Panel A) and by more than 5% for females (Fig. 5, Panel

B). The only exception is obesity: For this outcome, the early

health endowment is the single major determinant—a finding that

corroborates our interpretation of it as physical health.

Education

We now analyze the causal effect of education on the outcomes

we consider. The results are shown in Figure 7, where the

observed disparities are decomposed into the average

treatment effect of education (the darker region) and the effect

of selection. Notice that education has a causal effect on most

outcomes for both males and females. To gain a better under-

standing of the role played by education in reducing health dis-

parities, we complement Figure 7 with Figure 8, which displays

the fraction of the observed differential that can be attributed to

education. We see that education plays an important role in

explaining differences in smoking behavior, but it accounts for

half or less than half of the observed differential in self-

reported health. We also uncover significant gender differences:

Education plays a much more important role in accounting for

the gap in obesity rates for males than it does for females (notice

the difference in obesity by education is entirely due to selection

for females). This emphasizes the importance of taking the gen-

der dimension into account when studying health disparities.

Fig. 3. Marginal distributions of endowments for males (A) and females (B) by schooling level. The
figures show the marginal distributions of cognitive, noncognitive, and health endowments and are
generated using simulated data from our model. The simulated data contains the same number of
observations as the actual data. Adapted from Conti, Heckman, and Urzua (2010a, 2010b).
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Distribution of Treatment Effects

We now move beyond the traditional literature that only

considers mean effects and estimate distributions of treatment

effects (see Fig. 9). Knowledge of these distributions is

fundamental if we want to uncover what lies behind a ‘‘zero’’

average treatment effect and determine the proportion of the

individuals who actually benefit from the treatment. We notice

that, in the case of smoking, the proportion of people who gain

is much bigger than the proportion of people who ‘‘lose’’,10 so

the average treatment effect turns out to be negative (Fig. 9,

Panels A1 and A2). (In each graph, the height of the bar on the

left represents the proportion of individuals who would have a

successful outcome if treated (i.e., Y1 ¼ 0) but an unsuccessful

outcome if not treated (i.e., Y0 ¼ 1), so that the average treat-

ment effect for this group is �1. The opposite holds for the bar

on the right. The height of the middle bar represents the propor-

tion of individuals who would be unaffected by the treatment.)

However, consider obesity in females (Fig. 9, Panel C2). We

can see that underlying an insignificant average treatment

effect of education are gains and losses that balance each other

out—the same proportion of women (almost 20%) lose and

gain from the treatment. Although usually overlooked in

traditional studies on the impact of treatments on outcomes,

knowledge of these distributional parameters is fundamental

to understanding if there is a fraction of individuals who benefit

from a particular policy beyond the average treatment effect

(see Abbring & Heckman, 2007 for a discussion of distribu-

tional treatment effects).

Treatment Effect Heterogeneity: The Role of
Early Endowments

We next analyze how the average treatment effect of education

varies along the distribution of cognitive and noncognitive

skills, and early health. In each case, for a given outcome Y,

endowment yj and percentile Pyj
, we have computed

E Y1 � Y0jyj 2 Pyj

� �
by integrating out the characteristics

observed and by fixing the remaining two unobserved endow-

ments at their overall mean. Although there is a significant

amount of heterogeneity in the effect of education across

outcomes by levels of endowments, we can uncover some

distinct patterns. First, the beneficial effect of education is

much bigger at the top of the cognitive ability distribution for

males (see Panel A in Figs. 10–12) and at the bottom for

Fig. 4. Effects of endowments on daily smoking outcomes for males (A) and females (B). The
endowments and the outcomes are simulated from the estimates of the model in each panel; when
we compute the effect of each endowment on the outcome, we integrate out the observable
characteristics and fix the other two endowments at their overall mean. Adapted from Conti,
Heckman, and Urzua (2010a, 2010b).

Table 1. Marginal Effects of Endowments on Outcomes by Educational Level

Male Female

Variable Cognitive Noncognitive Health Cognitive Noncognitive Health

Education 0.205 (2.446) 0.045 (2.030) �0.002 (�0.070) 0.195 (3.732) 0.028 (1.778) 0.047 (1.744)
Daily smoking (C) 0.062 (2.133) �0.108 (�4.947) �0.116 (�2.722) 0.017 (0.580) �0.074 (�3.370) �0.046 (�1.215)
Daily smoking (PC) �0.009 (�0.276) �0.051 (�1.956) �0.107 (�2.161) �0.007 (�0.266) �0.054 (�2.119) 0.005 (0.141)
Poor health (C) 0.017 (0.794) �0.062 (�2.735) �0.076 (�1.992) �0.052 (�1.957) �0.035 (�1.795) �0.019 (�0.690)
Poor health (PC) �0.037 (�1.221) 0.001 (0.062) �0.076 (�1.599) �0.017 (�0.700) �0.025 (�1.254) �0.038 (�1.142)
Obesity (C) 0.014 (0.688) �0.026 (�1.515) �0.108 (�2.195) �0.012 (�0.407) �0.028 (�1.334) �0.210 (�4.000)
Obesity (PC) �0.007 (�0.251) 0.007 (0.330) �0.103 (�1.615) 0.039 (1.160) �0.037 (�1.491) �0.268 (�3.741)

Note: Adapted from Conti, Heckman, and Urzua (2010a, 2010b). Marginal effects are defined as the analytical derivative averaged over the unconditional distri-

bution of X and y:

ZZ
d Pr yk ¼ 1jX; yð Þ

dyj
dFX;y, with k ¼ 0; 1f g (k ¼ 0 if the person has stopped at the compulsory level of education, k ¼1 if the person has con-

tinued beyond the compulsory level) and j ¼ C;N;Hf g. Numbers in parentheses are t statistics. C ¼ compulsory; PC ¼ postcompulsory.

594 Conti and Heckman

 at CHICAGO UNIVERSITY on November 4, 2010pps.sagepub.comDownloaded from 

http://pps.sagepub.com/


females (apart from smoking, see Panel B in Figs. 10–12). This

is particularly interesting in the case of smoking, as it is consis-

tent with the interpretation that the information content on the

dangers of smoking provided by postcompulsory education

needs to be combined with the capacity to process that

information in order to be effective. Second, for all outcomes

and genders, education compensates for poor noncognitive

ability. Third, there is no heterogeneity in the effect of educa-

tion for males along the distribution of the health endowment.

The Role of Cognitive Ability

Table 2 compares the effect of cognitive ability in our

three-factor model with the effect found in a model where we

do not include noncognitive ability and early health. It is

striking to note that if early noncognitive traits are not included

in the model, early cognitive ability has an important effect for

all the outcomes, whereas it plays no role in the model where

we consider the three early factors jointly (see for example the

smoking and health outcomes). (The same pattern holds when

we estimate the effects of the endowments by means of factor

scores and simple Probit and OLS regression. The results are

available from the authors upon request.) This comes as no sur-

prise if we consider that the estimated correlations between the

cognitive and noncognitive endowments are very high (0.54 for

both males and females). To better gauge the magnitude of

these effects, Figure 13 presents the total effect of cognitive

ability on the outcomes in our three-endowment model and

in a model without the noncognitive and health endowment.

Notice that, in all the cases in which cognitive ability is not a

significant determinant of the outcomes in the three-factor

model, it has a significant and sizeable impact on them when

noncognitive skills and early health are not included; it also has

a bigger impact on the probability of being in poor health for

females, for which it was a significant determinant in the

three-factor model. This serves as a serious caveat for all the

work in this area that has not given adequate importance to

personality traits and focuses solely on the role played by

Fig. 5. Effects of endowments on fair or poor health outcomes for males (A) and females (B). The
endowments and the outcomes are simulated from the estimates of the model in each panel; when
we compute the effect of each endowment on the outcome, we integrate out the observable
characteristics and fix the other two endowments at their overall mean. Adapted from Conti,
Heckman, and Urzua (2010a, 2010b).

Fig. 6. Effects of endowments on obesity outcomes for males (A) and females (B). The
endowments and the outcomes are simulated from the estimates of the model in each panel; when
we compute the effect of each endowment on the outcome, we integrate out the observable
characteristics and fix the other two endowments at their overall mean. Adapted from Conti,
Heckman, and Urzua (2010a, 2010b).

Origins of the Education–Health Gradient 595

 at CHICAGO UNIVERSITY on November 4, 2010pps.sagepub.comDownloaded from 

http://pps.sagepub.com/


intelligence early in life (Gale, Batty, & Deary, 2008, and von

Stumm, Gale, Batty, & Deary, 2009, acknowledge the rele-

vance of locus of control in the relationship between childhood

IQ and adult health).

Possible Applications to Genetic Data

The framework of this article can be applied to the analysis of

genetic data. The most obvious way is to include yG as an

element of yt. This approach is somewhat unsatisfactory

because yCt; yNt; and yHt likely have genetic components.

One way to address this is through the technology of

skill formation (Cunha & Heckman, 2007, 2008, 2009;

Cunha, Heckman, & Schennach, 2010). Latent capabilities
~yt ¼ yCt; yNt; yHtð Þ may be produced by investment It, which

includes parental environments, schooling and the effects of

neighborhoods and social environments:

~yt ¼ f ð~yt�1; yG; It�1Þ ð9Þ

where yG, the genetic factor, affects the acquisition of

capabilities. At t ¼ 0, which corresponds to birth, I�1 denotes

the in-utero conditions (Gluckman & Hanson, 2005, 2006), and

~y�1 ¼ 0. Thus, early life conditions determine lifetime capabil-

ities. See Cunha and Heckman (2008) and Cunha, Heckman, and

Schennach (2010) for estimates of similar models that show the

promise of this approach (though they do not use genetic data).

Notice that we can allow the genetic factor yG to affect both

the choice of treatment (e.g., whether Di ¼ 1 or not) and the

outcomes given the choices (it is a component of y in Equations

6, 7, and 8). Hence our model can identify gene–environment

correlations (rGE), in which genes determine the selection into

environments (the component of aV corresponding to yG is not

zero), and gene–environment interactions (G�E), in which

environments can modify the association between genes and

outcomes (the components of aU1 and aU0 corresponding to

genes are not zero).

One possible way to use genetic data is as follows. First, our

modeling strategy easily accommodates the case in which a single

genetic marker proxies a certain genotype, modeling what Reiss

and Leve (2007) call ‘‘allele–environment’’ interaction. A second

possibility is to capitalize on recent advances in epigenotyping (a

method for assaying the methylation status of DNA) and use the

proportion of methylation in C-phosphate-G sites (cytosine and

guanine separated by a phosphate that links the two together in the

Fig. 7. Decomposition of the observed disparities in outcomes by education. The bar heights show
the difference in outcomes by educational level (postcompulsory schooling vs. compulsory
schooling). The darker region within each bar shows the fraction of the raw gap arising from the
causal contribution of education. The rest is due to selection. Adapted from Conti, Heckman, and
Urzua (2010a, 2010b).
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DNA sequence) as measurements. In this case, our modeling

strategy would naturally extend to a dynamic setting, to allow for

the fact that methylation patterns can change over time, and yGt

would be the methylated gene, which is what affects choices

of environments and outcomes (see Schneider et al., 2010—

we plan to extend our approach to a dynamic setting along the

lines of Cunha & Heckman, 2008, Cunha et al., 2010, and

Heckman, 2007). A third possibility is to use genome-wide

expression data from DNA microarray. In these latter cases,

clustering would naturally arise according to similarity in pat-

terns of gene expression (see Eisen, Spellman, Brown, &

Botstein, 1998), and our framework would allow us to analyze

significant differential expression after a given treatment. In

addition to this, the availability of the three different types of

data would allow us to examine the extent to which the geno-

type affects both gene expression and DNA methylation (see

Gibbs et al., 2010, for a very recent analysis along these lines).

Clearly, one advantage of modeling the second or third type of

data relies on the fact that changes in methylation patterns and

gene expression reflect genome-wide activity, whereas we

would use the first type of data to analyze the effect that specific

alleles have on the choice of environments and on the outcomes.

Notice that each of the four endowments can be itself a

vector: this would allow us to model, respectively, fluid

and crystallized intelligence, the Big Five, physical and

mental health, and, in the case of yG, gene–gene interactions

(G�G), which, if not properly accounted for, can give rise to

false gene–environment correlations (rGE). Finally, it is

worth remarking that as our model allows each endowment

to have an effect on the choice of environment and on a

variety of outcomes, it encompasses pleiotropy (i.e., the cases

in which genes have differential effects on more than one

phenotype).

Twin Data

If analysts have access to twin data, they do not need direct

measurements on genetic markers. In contrast to the approach

previously discussed, we now deal with the case of observed

environments but with no direct proxy for genotype. The avail-

ability of data on twins allows us to estimate genetic effects

even in absence of measures of genotypes.

Traditionally, twin studies decompose the phenotypic

variance into three components: additive genetic, common

environment, and unique environment—the so-called ACE

model. Here, we discuss a binary environment, and we refer the

reader to recent work by Purcell (2002) and Rathouz, Van Hulle,

Rodgers, Waldman, and Lahey (2008) for the case of continuous

Fig. 8. Fraction of the observed disparities in outcomes due to education. The figure displays the
fractions of the observed differentials that can be attributed to the effect of education. Specifically, if we
denote byD the observed differences in outcome Y (i.e. D ¼ E Y1jD ¼ 1½ � � E Y0jD ¼ 0½ �), in this

figure we present
E Y1 � Y0½ �

E Y1jD ¼ 1½ � � E Y0jD ¼ 0½ �. The differential in obesity by education for females

is entirely explained by selection. Adapted from Conti, Heckman, and Urzua (2010a, 2010b).
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moderators. For the binary environment, Eaves (1982) proposed

a simple method for detecting G�E: estimate components of

phenotypic variance conditional on environmental exposure,

such that, if the amount of variance explained by genetic factors

differs between exposed and unexposed twins, then this will con-

stitute evidence for G�E (as a different environment is applied

over the same set of genotypes). Eaves (1982) recognized that

phenotypic differences might be also due to active gene–

environment correlations but did not propose a method to sepa-

rate out the two components. Our method encompasses both

rGE and G�E with twins data in the context of the genetic

factor model proposed by Martin and Eaves (1977).

As the choice and the outcome portions of our model are

unchanged (apart from the presence of a set of outcomes and a

choice equation for each twin), we focus on the measurement sys-

tem to show how genetic effects can be identified from multiple

proxies on the same factor for MZ and DZ twins. Mij is defined

as the ith measurement M ontwin j (thinkofMasa testofcognitive

ability, for example). Let us further assume that we have two

measurements for each twin, and that each measurement is a

Fig. 9. Population distribution of the average treatment effect. A: Daily smoking (males and females). B: Fair/poor health (males and
females). C: Obesity (males and females). The figures display the distribution of the average treatment effect by gender. The
outcomes are simulated from the estimates of the model. The simulated data contains the same number of observations as the
actual data. Adapted from Conti, Heckman, and Urzua (2010a, 2010b).
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Fig. 10. Treatment effect heterogeneity for daily smoking in males (A) and females (B). The
endowments and the outcomes are simulated from the estimates of the model in each panel; when
computing the average treatment effect along the distribution of each endowment, we integrate
out the observable characteristics and fix the other two endowments at their overall mean.
Adapted from Conti, Heckman, and Urzua (2010a, 2010b).

Fig. 11. Treatment effect heterogeneity for fair/poor health in males (A) and females (B). The
endowments and the outcomes are simulated from the estimates of the model in each panel; when
computing the average treatment effect along the distribution of each endowment, we integrate
out the observable characteristics and fix the other two endowments at their overall mean.
Adapted from Conti, Heckman, and Urzua (2010a, 2010b).

Fig. 12. Treatment effect heterogeneity for obesity in males (A) and females (B). The endowments
and the outcomes are simulated from the estimates of the model in each panel; when computing
the average treatment effect along the distribution of each endowment, we integrate out the
observable characteristics and fix the other two endowments at their overall mean. Adapted from
Conti, Heckman, and Urzua (2010a, 2010b).
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linear function of the factor it is designed to proxy (cognitive

ability, in the context of the above example) and of the genetic

endowment. Thus, we relax the assumption of dedicated measure-

ments. Defining y�1 as the cognitive ability of Twin 1 and y�2 as

the cognitive ability of Twin 2, we leave the conditioning on

X implicit to simplify the exposition and write the measurement

system as follows:

M11 ¼ y�1 þ b1yG1 þ u11

M21 ¼ a21y1 þ b2yG1 þ u21

M12 ¼ y�2 þ b1yG2 þ u12

M22 ¼ a22y2 þ b2yG2 þ u22

where we make the standard assumptions in twin design that

b1; b2ð Þ are the same for both twins, and we use the first

measurement for each twin to normalize the factor y�j . In

addition, we assume that s2
y�1
¼ s2

y�2
. Let us further assume for

the moment y�j � yG, where ‘‘ �’’ denotes independence. By

using the fact that cov yG1; yG2ð Þ ¼ 1 in the case of MZ twins,

and cov yG1; yG2ð Þ ¼ 0:5 in the case of DZ twins, we obtain the

following covariances:

MZ Twins ¼

covðM11;M21Þ ¼ a21s2
y�1
þ b1b2

covðM12;M22Þ ¼ a22s2
y�2
þ b1b2

covðM11;M12Þ ¼ sy�1y
�
2
þ b2

1

covðM21;M22Þ ¼ a21a22sy�1y
�
2
þ b2

2

8>>><
>>>:

DZ Twins ¼

covðM11;M21Þ ¼ a21s2
y�1
þ 0:5b1b2

covðM12;M22Þ ¼ a22s2
y�1
þ 0:5b1b2

covðM11;M12Þ ¼ sy�1y
�
2
þ 0:5b2

1

covðM21;M22Þ ¼ a21a22sy�1y
�
2
þ 0:5b2

2

8>>><
>>>:

From the eight covariances and the assumption that s2
y�1
¼ s2

y�2
,

we are generally able to identify all the seven parameters of the

measurement system b1; b2; a21; a22;s2
y�1

�
¼ s2

y�2
;sy�1y

�
2
Þ with

b1; b2ð Þ and ða21; a22Þ identified up to sign. With this type of

information, we can relax the assumption that y�j � yG, and

identify sy�j yG
, at the cost of imposing an assumption like

sy�1yG
¼ sy�2yG

. Clearly, the availability of a number of mea-

surements (>2) for each twin, or of multiple time periods,

would allow us also to relax this equicorrelation assumption

and to identify richer models. The development of these models

is left for another occasion.

Adoption Data

The model can be applied to adoption data. As in the case of

twins data, one defining characteristic of the adoption design

is the possibility of identifying and estimating genetic effects

in the absence of direct measurements on genotypes. In the

following analysis, we present the simplest possible model

that allows us to exploit adoption data (our model

currently does not consider the case of adoption of rela-

tives—this is a straightforward extension that is left for a

future occasion). For ease of exposition, we present this

model in the context of a specific application on structured

parenting (D, the environment) and child psychopathology

(Y, the outcome; see Leve et al., 2009, for the original appli-

cation). Define yB as the birth parents (BP) factor (e.g. depres-

sion), yA as the adoptive parents (AP) factor (same personality

disfunction as for the BP), and yC as the adopted child (AC)

factor (e.g., behavioral problems as early precursors of

psychopathology). By defining the treatment as structured par-

enting and the outcome as child psychopathology, we

notice that we are able to model genetic and environmental

effects on parenting, while allowing at the same time parenting

to exert a differential effect on child psychopathology as a

function of genetic endowments. Thus, we incorporate both

rGE and G�E in this setup. We rewrite our choice equation

as follows:

S� ¼ gZ þ aBVyB þ aAVyA þ aCVyC þ uV ð10Þ

and we rewrite the potential outcome (child psychopathology)

associated with exposure to structured parenting as follows:

Y1 ¼ m1ðX Þ þ aB1yB þ aA1yA þ aC1yC þ uU1 ð11Þ

Table 2. Marginal Effects of Endowments on Outcomes, by Educational Level: Cognitive Ability Only

Males Females

Variable Three-factor model Cognitive ability only Three-factor model Cognitive ability only

Education 0.205 (2.446) 0.238 (2.524) 0.195 (3.732) 0.220 (3.823)
Daily smoking (C) 0.062 (2.133) �0.045 (�2.041) 0.017 (0.580) �0.045 (�1.918)
Daily smoking (PC) �0.009 (�0.276) �0.054 (�1.931) �0.007 (�0.266) �0.050 (�1.927)
Poor health (C) 0.017 (0.794) �0.045 (�2.382) �0.052 (�1.957) �0.081 (�2.918)
Poor health (PC) �0.037 (�1.221) �0.045 (�1.634) �0.017 (�0.700) �0.040 (�1.687)
Obesity (C) 0.014 (0.688) �0.022 (�1.370) �0.012 (�0.407) �0.063 (�2.651)
Obesity (PC) �0.007 (�0.251) �0.009 (�0.393) 0.039 (1.160) �0.021 (�0.847)

Note: Adapted from Conti, Heckman, and Urzua (2010a, 2010b). This table displays unstandardized coefficients. The three-factor-model column displays the same
results as Table 1 (the ‘‘Cognitive’’ column). The cognitive-ability-only column displays the estimated marginal effects of the cognitive factor on the outcomes for a
model that does not include the noncognitive and health factors. Numbers in parentheses are t statistics. C ¼ compulsory; PC ¼ postcompulsory.
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and the potential outcome obtained if the parent does not adopt

a structured parenting approach is as follows:

Y0 ¼ m0ðX Þ þ aB0yB þ aA0yA þ aC0yC þ uU0 ð12Þ

It is now instructive to interpret each of the model parameters:

aBV represents evocative rGE, aB1 and aB0 capture how

parenting moderates genetic risk, aAV captures the indirect

effect of adoptive parents personality through parenting, aA1

and aA0 capture the direct effect on the child psychopathology,

aCV captures the direct effect of child’s early behavioral

problems on parenting, and aC1 and aC0 allow parenting to have

a differential effect on child’s outcomes depending on child’s

early behavioral problems. It turns out that the covariances

among the factors have a meaningful interpretation in this set-

ting: cov yA; yBð Þ captures the presence of selective placement

or adoption openness, cov yA; yCð Þ captures the similarity

between adoptive parents and children that reflects environmen-

tal influences, and cov yB; yCð Þ captures the similarity between

birth parents and children that reflect genetic influences. Under

general conditions specified in Carneiro et al. (2003) and

Abbring and Heckman (2007), the model is identified. We hope

to apply these models in future work.

Conclusions

In this article, we apply a general model for causal inference of

interventions (choices of environments) in the presence of

latent variables that affect choices of interventions and

outcomes to disentangle the causal effect of interventions from

the role played by latent factors as they determine outcomes. In

an empirical illustration of our methodology, we draw on the

work of Conti, Heckman, and Urzua (2010a, 2010b) that

Fig. 13. Effect of cognitive ability. A: Effect on daily smoking for males and females. B: Effect on fair/
poor health for males and females. C: Effect on obesity for males and females. The figure shows the
effect of cognitive ability on the outcome of interest in the three-factor model versus a model
without the noncognitive and health endowments. The dashed line is the same as the one displayed
in Figures 4–6 for the cognitive factor in the three-factor model. Adapted from Conti, Heckman,
and Urzua (2010a, 2010b).

Origins of the Education–Health Gradient 601

 at CHICAGO UNIVERSITY on November 4, 2010pps.sagepub.comDownloaded from 

http://pps.sagepub.com/


determines the role played by cognitive, noncognitive, and

early health endowments on adult outcomes. We identify the

causal effect of education on health and health-related beha-

viors. We develop an empirical model of schooling choice and

postschooling outcomes, in which both dimensions are influ-

enced by latent factors (cognitive, noncognitive, and health).

We show that family background characteristics and cognitive,

noncognitive, and health endowments present as early as age

10 are important determinants of disparities in smoking rates,

poor health, and obesity at age 30. We show that not properly

accounting for personality traits overestimates the importance

of cognitive ability in determining later health. We show that

selection explains more than half of the observed difference

by education in poor health and obesity, and that education

has an important causal effect in explaining differences in

smoking rates. We uncover significant gender differences.

We go beyond the current literature, which usually estimates

mean effects to compute distributions of treatment effects. We

show how the health returns to education can vary also among

individuals who are similar under their observed characteris-

tics and how a mean effect can hide gains and losses for dif-

ferent individuals. This highlights the crucial role played by the

early years in promoting health and the importance of prevention

in the reduction of health disparities. We have discussed how the

method can be applied to analyze how genes affect the choice of

interventions (environments) and the potential outcomes result-

ing from interventions. An empirical application of the model

to genetic data is left to the future.

Footnotes

1. For example, Bakermans-Kranenburg, Van Ijzendoorn, Pijlman,

Mesman, and Juffer (2008) show that children carrying a

high-risk allele of the DRD4 gene have a stronger response to a

parent training program designed to reduce their conduct prob-

lems. For other examples of planned treatments that moderate

genetic influences or of treatments in which genetic factors mod-

erate effects, see Bauer et al. (2007) and Brody, Beach, Philibert,

Chen, and Murry (2009).

2. Notice this also incorporates into the modeling approach features

of existing genetic analyses, according to which individuals

carrying certain genetic variants are both more likely to adopt

certain behaviors, and to benefit from them (see Nicklas et al.,

2005, for the case of exercise and cytokine gene).

3. Equations 2–4 are from the Neyman (1923), Fisher (1935), Cox

(1958), and Rubin (1974) model of potential outcomes. With the

addition of Equation 1 it is also the switching regression model

of Quandt (1972) or the Roy model of income distribution

(Heckman & Honoré, 1990; Heckman & Sedlacek, 1985; Roy,

1951).

4. Assuming dedicated measurements means that the cognitive,

noncognitive, health, and genetic measurements are only related

to their respective factors. One can relax this assumption in vari-

ous ways. See Carneiro et al. (2003).

5. This decision is particularly important in the United Kingdom (the

country we study), where the dropout rate is particularly high.

6. The original name of the data was the British Births Survey

(BBS), sponsored by the National Birthday Trust Fund in associ-

ation with the Royal College of Obstetricians and Gynecologists.

7. Conti, Heckman, Lopes, and Piatek (2010) consider other

treatment parameters, such as the average effect of the treatment

on the treated (i.e., on a person drawn randomly from the popula-

tion of individuals who entered the treatment) and the marginal

treatment effect.

8. The results for the measurement systems are available at our Web

appendix. See Tables (A4)–(A6). Here we just notice that each of

the unobserved endowments is a significant determinant of the

respective set of measurements.

9. Following Aakvik et al. (2005), marginal effects are defined as the

analytical derivative averaged over the unconditional distribution

of X and y:

ZZ
q Pr yk ¼ 1jX ; yð Þ

qyj

dFX ;y, with k ¼ 0; 1f g and

j ¼ C;N ;Hf g.
10. In this particular example, those who ‘‘lose’’ are people who start

smoking as a consequence of continuing education after age 16.

We can think of many reasons why this could be the case:

inability to cope with stress due to increased study effort, negative

peer effects, etc.
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